
CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Assignment I:
Calculator
Objective

The goal of this assignment is to recreate the demonstration given in lecture and then
make some small enhancements. It is important that you understand what you are
doing with each step of recreating the demo from lecture so that you are prepared to do
the enhancements.
Another goal is to get experience creating a project in Xcode and typing code in from
scratch. Do not copy/paste any of the code from anywhere. Type it in and watch what
Xcode does as you do.
This assignment must be submitted using the submit script described here by the start
of lecture next Wednesday (i.e before lecture 4). You may submit it multiple times if you
wish. Only the last submission will be counted. For example, it might be a good idea to
go ahead and submit it after you have reproduced what was shown in lecture and gotten
that part working (even before you attempt the enhancements). If you wait until the last
minute to try to submit and you have problems with the submission script, you’ll likely
have to use one of your valuable free late days.
Be sure to review the Hints section below!
Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Materials
• You will need to install the (free) program Xcode 7 using the App Store on your Mac

(Xcode 6 will NOT work). It is highly recommended that you do this immediately so
that if you have any problems getting Xcode to work, you have time to get help from
Piazza and/or the TAs in their office hours.

• A link to the video of the lectures can be found in the same place you found this
document.

PAGE OF ASSIGNMENT I: CALCULATOR1 7

http://web.stanford.edu/class/cs193p/cgi-bin/drupal/submissions

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Required Tasks
1. Get the Calculator working as demonstrated in lectures 1 and 2.

2. Your calculator already works with floating point numbers (e.g. if you touch 3 ÷ 4 =,
it will properly show 0.75), however, there is no way for the user to enter a floating point
number directly. Fix this by allowing legal floating point numbers to be entered (e.g.
“192.168.0.1” is not a legal floating point number!). You will have to add a new “.”
button to your calculator. Don’t worry too much about precision or significant digits
in this assignment (including in the examples below).

3. Add some more operations buttons to your calculator such that it has at least a dozen
operations total (it can have even more if you like). You can choose whatever
operations appeal to you. The buttons must arrange themselves nicely in portrait and
landscape modes on all iPhones.

4. Use color to make your UI look nice. At the very least, your operations buttons must
be a different color than your keypad buttons, but otherwise you can use color in
whatever way you think looks nice.

5. Add a String property to your CalculatorBrain called description which returns a
description of the sequence of operands and operations that led to the value returned
by result. “=“ should never appear in this description, nor should “…”.

6. Add a Bool property to your CalculatorBrain called isPartialResult which returns
whether there is a binary operation pending (if so, return true, if not, false).

7. Use the two properties above to implement a UILabel in your UI which shows the
sequence of operands and operations that led to what is showing in the display. If
isPartialResult, put . . . on the end of the UILabel, else put =. If the
userIsInTheMiddleOfTypingANumber, you can leave the UILabel showing whatever
was there before the user started typing the number. Examples …

a. touching 7 + would show “7 + …” (with 7 still in the display)
b. 7 + 9 would show “7 + …” (9 in the display)
c. 7 + 9 = would show “7 + 9 =” (16 in the display)
d. 7 + 9 = √ would show “√(7 + 9) =” (4 in the display)
e. 7 + 9 √ would show “7 + √(9) …” (3 in the display)
f. 7 + 9 √ = would show “7 + √(9) =“ (10 in the display)
g. 7 + 9 = + 6 + 3 = would show “7 + 9 + 6 + 3 =” (25 in the display)
h. 7 + 9 = √ 6 + 3 = would show “6 + 3 =” (9 in the display)
i. 5 + 6 = 7 3 would show “5 + 6 =” (73 in the display)
j. 7 + = would show “7 + 7 =” (14 in the display)
k. 4 × π = would show “4 × π =“ (12.5663706143592 in the display)
l. 4 + 5 × 3 = would show “4 + 5 × 3 =” (27 in the display)
m. 4 + 5 × 3 = could also show “(4 + 5) × 3 =” if you prefer (27 in the display)

PAGE OF ASSIGNMENT I: CALCULATOR2 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

8. Add a C button that clears everything (your display, the new UILabel you added
above, etc.). The Calculator should be in the same state as it is at application startup
after you touch this new button.

PAGE OF ASSIGNMENT I: CALCULATOR3 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Hints
1. The String method rangeOfString(String) might be of great use to you for the

floating point part of this assignment. It returns an Optional. If the passed String
argument cannot be found in the receiver, it returns nil (otherwise don’t worry about
what it returns for now).

2. The floating point requirement can be implemented in a single line of code. Note
that what you are reading right now is a Hint, not a Required Task. Still, see if you
can figure out how to implement it in one or two lines (a curly brace on a line by itself
is not considered a “line of code”).

3. Be careful of the case where the user starts off entering a new number by touching the
decimal point, e.g., they want to enter the number .5 into the calculator. It might well
be that your solution “just works” but be sure to test this case.

4. Economy is valuable in coding. The easiest way to ensure a bug-free line of code is
not to write that line of code at all. This entire assignment (not including Extra
Credit) can be done in a few dozen lines of code, so if you find yourself writing more
than 100 lines of code, you might be on the wrong track.

5. You can use any Unicode characters you want as your mathematical symbols for your
operations. For example, x² and x⁻¹ are perfectly fine mathematical symbols.

6. If you set a UILabel’s text to nil or “” (the empty string), it will resize to have zero
height (shifting the rest of your UI around accordingly). You may find this
disconcerting for your users. If you want a UILabel to appear empty, but not be zero
height, simply set its text to be “ ” (space).

7. If you put two (or more) things in a Stack View and you want one (or more) of them
to be as small as possible and the rest to use up the remaining space, you can do this
by setting the Content Hugging Priority (CHP) of each of the things in the Stack
View accordingly. A high(er) number for CHP means “make this be as small as it can
be and still fit its contents”. A low(er) number means “while laying this out, you can
stretch it as much as you want”. The CHP for a given button or label (or whatever)
can be set in the Dimensions Inspector in the Utilities (right side) panel in Xcode.
UIButtons have a default CHP of 250. UILabels have a default CHP of 251. So if
you had a button and a label in the same stack view, by default the button would be
huge and the label would be small. So if wanted the opposite (small button, large
label), you’d want to change the button’s CHP from 250 to 252 (or higher, but just so
that it’s higher than the label’s 251). Or you could change the label’s CHP to 249 (or
lower). This is a Hint, not a Required Task. It is quite possible (even likely) that you
will implement your entire homework assignment without paying any attention to
CHP at all. So if this is confusing you, ignore it.  

PAGE OF ASSIGNMENT I: CALCULATOR4 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.

1. Xcode
2. Swift
3. Target/Action
4. Outlets
5. UILabel
6. UIViewController
7. Classes
8. Functions and Properties (instance variables)
9. let versus var
10. Optionals
11. Computed vs. Stored properties
12. String and Dictionary

PAGE OF ASSIGNMENT I: CALCULATOR5 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Your solution is difficult (or impossible) for someone reading the code to
understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the SDK, but should not assume that they
already know the (or a) solution to the problem.

PAGE OF ASSIGNMENT I: CALCULATOR6 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Extra Credit
We try to make Extra Credit be opportunities to expand on what you’ve learned this
week. Attempting at least some of these each week is highly recommended to get the
most out of this course.

1. Implement a “backspace” button for the user to touch if they hit the wrong digit
button. This is not intended to be “undo,” so if the user hits the wrong operation
button, he or she is out of luck! It is up to you to decide how to handle the case where
the user backspaces away the entire number they are in the middle of typing, but
having the display go completely blank is probably not very user-friendly. You will
find the Strings and Characters section of the Swift Reference Guide to be very
helpful here.

2. Change the computed instance variable displayValue to be an Optional Double
rather than a Double. Its value should be nil if the contents of display.text cannot
be interpreted as a Double. Setting its value to nil should clear the display out. You’ll
have to modify the code that uses displayValue accordingly.

3. Figure out from the documentation how to use the NSNumberFormatter class to format
your display so that it only shows 6 digits after the decimal point (instead of showing
all digits that can be represented in a Double). This will eliminate the need for
Autoshrink in your display. While you’re at it, make it so that numbers that are
integers don’t have an unnecessary “.0” attached to them (e.g. show “4” rather than
“4.0” as the result of the square root of sixteen). You can do all this for your
description in the CalculatorBrain as well.

4. Make one of your operation buttons be “generate a random number between 0 and
1”. This operation button is not a constant (since it changes each time you invoke it).
Nor is it a unary operation (since it does not operate on anything).

PAGE OF ASSIGNMENT I: CALCULATOR7 7

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html#//apple_ref/doc/uid/TP40014097-CH7-ID285

